Skip to content
The World of International Organizations
  • Home
  • About Us
  • Archives
  • Sign Up
  • twittericon
  • facebookicon
  • linkedinicon
  • Reset
How It Works

CERN celebrates ‘Run 3’ — and 3 new exotic particles

Scientists cheered as the world’s biggest and most powerful atom smasher started recording high-energy collisions of protons at an unprecedented 13.6 TeV.

Print Friendly, PDF & Email
By John Heilprin - July 5, 2022
Inside the control room of ATLAS, one of two general-purpose detectors at CERN's Large Hadron Collider (AN/J. Heilprin)

GENEVA (AN) — Scientists cheered as the world’s biggest and most powerful atom smasher started recording high-energy collisions at the unprecedented energy of 13.6 trillion electronvolts, raising the prospect of more discoveries about the universe’s fundamental properties.

The Large Hadron Collider’s third years-long run known as ‘Run 3’ — its third time creating high-energy collisions of protons to investigate dark matter, antimatter and the creation of the universe since 2008 — began on Tuesday with its detectors once again recording those collisions between protons sent in opposite directions around its 27-kilometer ring in a vast complex on the Swiss-French border.

Also Tuesday, physicists at the European Organization for Nuclear Research, known by its French acronym CERN, told a seminar they observed three new particles.  The new kind of pentaquark and first-ever pair of tetraquarks, including a new type, “will help physicists better understand how quarks bind together into these composite particles,” CERN said.

The new pentaquark, illustrated here as a pair of standard hadrons loosely bound in a molecule-like structure, is made up of a charm quark and a charm antiquark and an up, a down and a strange quark (AN/CERN)

And on Monday, CERN celebrated the 10-year anniversary of its landmark discovery of the Higgs boson, the elusive subatomic particle believed to give all matter in the universe size and shape. The 2012 announcement unveiled a “missing cornerstone of physics” predicted by scientists almost a half-century before.

CERN restarted the LHC in April, after a shutdown of more than three years to allow for maintenance, consolidation and upgrades. It began at a lower energy level of 450 billion electronvolts, or 450 GeV, in preparation for Run 3’s high-intensity, high-energy collisions.

Scientists then had to gradually recommission LHC to safely ramp up the energy and intensity of beams before delivering collisions to experiments at 13.6 TeV. The LHC has a limited life-span, and is sometimes shut down for repairs or upgrades.

It is now set to run “for close to four years at the record energy of 13.6 TeV, providing greater precision and discovery potential,” CERN said. “Increased collision rates, higher collision energy, upgraded data readout and selection systems, new detector systems and computing infrastructure: all these factors point to a promising physics season that will further expand the already very diverse LHC physics program!”

[Press Update] The third run of the Large Hadron Collider has successfully started #LHCRun3

Find out more: https://t.co/PcFRKbBmW6 pic.twitter.com/C7bXpmzdjq

— CERNpress (@CERNpress) July 5, 2022

Back to the future: high-luminosity mode

The newly upgraded LHC will be used to probe the nature of the Higgs boson with unprecedented precision and in new channels, scientists say, and it may observe previously inaccessible processes. They say it will be able to improve the measurement precision of numerous known processes addressing fundamental questions, such as the origin of the matter–antimatter asymmetry in the universe.

Scientists say they also will study the properties of matter under extreme temperature and density, and will also be searching for candidates for dark matter and for other new phenomena, either through direct searches or – indirectly – through precise measurements of properties of known particles.

“We’re looking forward to measurements of the Higgs boson decay to second-generation particles such as muons. This would be an entirely new result in the Higgs boson saga, confirming for the first time that second-generation particles also get mass through the Higgs mechanism,” CERN theorist Michelangelo Mangano said.

After that run, the High Luminosity Large Hadron Collider is expected to operate by the start of 2028. Luminosity refers to the number of collisions among sub-atomic particles. The higher the luminosity, the more data become available. The upgrades will increase the number of proton collisions for experiments.

The HL-LHC, an upgrade of the LHC, “aims to achieve instantaneous luminosities a factor of five larger than the LHC nominal value, thereby enabling the experiments to enlarge their data sample by one order of magnitude compared with the LHC baseline program,” CERN said.

Print Friendly, PDF & Email

Related Articles

  • CERN particle accelerator restarted
    CERN particle accelerator restarted
    The world's biggest and most powerful atom smasher is once again circulating beams of protons…
  • CERN particle collider to reopen in 2021
    CERN particle collider to reopen in 2021
    CERN's atom smasher will restart for the first test beams in May 2021, two months…
  • CERN discovers a new 'exotic' tetraquark
    CERN discovers a new 'exotic' tetraquark
    Researchers at the world’s biggest atom smasher announced they have observed a type of four-quark…

About Us   Archives    News    In Depth    Under The Radar    How It Works   Data

Terms of Service   |   Privacy Policy

© Arete News

Design & Development by Vast.dev